MATH 7 Accelerated: Week of April 20

- Go through the slides (notes) and work through the examples on a separate piece of paper.
- Do the given practice problems (again, on a separate piece of paper).
- Check your answers with the key given (last slide).
- If you have questions or would like feedback on your work, submit a photo/scan of it to google docs or return your work to the school Monday.
- If you do not have questions/need feedback, click on the "mark as complete" button on Google Docs.
- Check your school email/google calendar for online help sessions via Zoom.

Day 1: Slides 2-5
Day 2: Slides 6-10
Day 3: Slide 11-15
Day 4: Slide 16-17
Answers on Slide 18

Day 1

L4: Vertical Angles \& Linear Pairs

Vocabulary

Vertical Angles:
Nonadjacent angles formed by two intersecting lines.
Vertical angles are equal in measure.

$\angle 1 \& \angle 4$ are vertical angles.

Linear Pair: Two adjacent angles whose non-common sides are opposite rays. If two angles form a linear pair, they are supplementary angles.
$\angle 1 \& \angle 2$ are a linear pair.

Example 1

Find the measure of each missing angle.
a. $m \angle 3$

- Vertical angles are congruent.
b. $m \angle 1$
- $m \angle 1$ and $m \angle 2$ are a linear pair.
$m \angle 1+m \angle 2=180$
- Substitute known values.
- Subtract 54 from each side.
c. $m \angle 4$
- Vertical angles are congruent.
$m \angle 1=m \angle 4$
$126^{\circ}=m \angle 4$

Example 2

Use the diagram to the right.
a. Solve for x.
b. Find the measure of each angle.
a. Vertical angles have equal measures. Subtract x from each side.

Subtract 7 from each side.
Divide by 2 on each side.
b. Substitute the solution for x in each angle expression.
$(3 x+7)=(3(11.5)+7)=(34.5+7)=41.5^{\circ}$
$(x+30)=(11.5+30)=41.5^{\circ}$
The measure of each angle is 41.5°.

L4 Practice Problems:

1. Determine the measure of each unknown angle using the diagram below.

a) $m \angle 2=$
b)
c) $m \angle 4=$

Identify each identified angle pair as vertical angles or a linear pair. Solve for \boldsymbol{x}.
2.

3.

4.

5.

END DAY 1

Day 2

L5: Alternate Exterior and Interior Angles

Vocabulary

Transversal: A line that intersects two or more lines in the same plane.

$$
\overleftrightarrow{X Y} \overleftrightarrow{\leftrightarrow} \text { is a transversal }
$$

Alternate Exterior Angles: Two angles on the outside of two lines and on opposite sides of a transversal.

$\angle 1 \& \angle 7$ are alternate exterior angles.

Alternate Interior Angles:
Two angles on the inside of two lines and on opposite sides of a transversal.
$\angle 4 \& \angle 6$ are alternate interior angles.

Example 1

 then the alternate interior angles are congruent.If two parallel lines are intersected by a transversal, then alternate exterior angles are congruent.

Name the angle relationship between $\angle 1$ and $\angle 2$.
Determine whether $\angle 1$ and $\angle 2$ are congruent.

Alternate Interior Congruent - lines are parallel

Alternate Exterior
Not Congruent - lines are not parallel

Alternate Exterior
Congruent - lines are parallel

Example 2

Identify the special angle pair relationship. Solve for x.

- The angles are alternate exterior angles.
- Lines l and m area parallel so the alternate exterior angles are congruent.
,
- Subtract 4 from each side.

$$
\begin{aligned}
8 x+4 & =86 \\
-4 & -4 \\
\frac{8 x}{8} & =\frac{82}{8} \\
x & =10.25
\end{aligned}
$$

Example 3

Use the figure. Solve for x and find the measure of the angles.

- The lines are parallel so alternate interior angles are congruent.
- Subtract $2 x$ from each side.

$$
\begin{gathered}
9 x-58=2 x+ \\
-2 x \quad-2 x \\
\hline 7 x-58=5 \\
+58+58 \\
\hline \frac{7 x}{7}=\frac{63}{7} \\
x=9
\end{gathered}
$$

- Add 58 to each side.
- Divide by 7 on each side.
- Write the given expression for each angle then substitute 9 for x.
- $(2 x+5)=(2(9)+5)=(18+5)=23^{\circ}$
, $(9 x-58)=(9(9)-58)=(81-58)=23^{\circ}$

L5 Practice Problems:

Name the special angle pair relationship.
6.

7.

Name the special angle pair relationship. Solve for \boldsymbol{x}.

Day 3 L6: Corresponding and Same-Side Interior Angles

Vocabulary

Corresponding Angles: Two non-adjacent angles that are on the same side of a transversal with ne angle is outside the two lines and the other angle is inside.
$\angle 1 \& \angle 5$ are corresponding angles.

Same-Side Interior Angles: Two angles that are on the inside of two lines and are on the same side of the transversal.

Example 1

Name the special angle pair relationship between $\angle 1$ and $\angle 2$.
a.

b.

a. corresponding angles
b. same-side interior angles
c. corresponding angles
$\angle 3 \& \angle 6$ are same-side
interior angles.

Example 2

Write an equation and solve for x.

Corresponding angles have equal measures.

$$
\begin{aligned}
& 4 x+9=117 \\
& -9 \quad-9 \\
& \frac{4 x}{4}=\frac{108}{4} \\
& x=27
\end{aligned}
$$

Subtract 9 from each side.
Divide by 4 on each side.
Check the solution by substituting 27 for x in the equation.

$$
\begin{aligned}
4(27)+9 & =117 \\
108+9 & =117 \\
117 & =117 \boldsymbol{V}
\end{aligned}
$$

Example 3

Write an equation and solve for x.
Then find the measure of each identified angle.
The lines are parallel so the same-side interior angles are supplementary.
$(3 x+1)+(3 x+44)=180$
Combine like terms.
Subtract 45 from each side.
Divide by 6 on each side

Find the measure of each angle by substituting 22.5 for x.

$$
\begin{gathered}
(3 x+1)=(3(22.5)+1)=(67.5+1)=68.5^{\circ} \\
(3 x+44)=(3(22.5)+44)=(67.5+44)=111.5^{\circ} \\
68.5+111.5=180
\end{gathered}
$$

L6 Practice Problems:

Name the special angle pair relationship.

Name the special angle pair relationship. Solve for \boldsymbol{x}.
13.

END DAY 3

L4-6 Practice Problems:

Name the special angle pair relationship. Solve for x. Then find the measure of each identified angle.
16

17.

END DAY 4

Practice Problems: ANSWER PAGE

Day 4:

16. Corresponding; $x=3 ; 46^{0}$
17. Vertical Angles; $x=30 ; 150^{0}$
18. Alternate interior; $\mathrm{x}=10 ; 43^{0}$
19. Same-side interior; $x=20 ; 40^{\circ} \& 140^{\circ}$
20. Alternate Exterior; $x=15 ; 130^{0}$
21. Linear Pair; $x=12 ; 120^{0}$
Day 3:
22. Corresponding
23. Same-side interior
24. Corresponding, $x=35$
25. Same-side interior; $x=17$
26. Same-side interior; $x=19$

Day 2:

6. Alternate Exterior
7. Alternate Interior
8. Alternate Interior; $x=6$
9. Alternate Exterior; $x=65$
10. Alternate Exterior; $x=11$

Day 1:

1. a) 74^{0} b) 74^{0} c) 106^{0}
2. Linear Pair; $x=26$
3. Vertical angles; $x=12$
4. Vertical angles; $x=32$
5. Linear pair; $x=9$

MATH 7A: LAST SLIDE for this week!

