ALGEBRA 1:

Week of April 20

 MORE FACTORING
Day 1: Practice Problems Set 1
 Day 2: Practice Problems Set 2

Day 3: Work through the notes for 3.6 Continued \& work through the examples.
Day 4: Practice Problems Set 3
Check Google Classroom for online help sessions.

Practice Problems: Set 1

Convert the quadratic functions from factored form to general form.

1. $g(x)=(x-3)(x+3)$
2. $f(x)=(2 x+5)(2 x-5)$
3. $y=(3 x-1)(3 x+1)$
4. $y=(x-10)(x+10)$
5. $p(x)=(4 x-3)(4 x+3)$
6. $y=(x+6)(x-6)$
7. What do you notice about the product of each pair of binomials in \#1-6?
8. Create another quadratic function that follows the same pattern. Write the function in both factored and general form.
9. Examine the factored form and general form of each quadratic function above. The functions are called differences of squares. How does this name connect to the general form?

Use the pattern you observed in the exercises above to factor each binomial.
10. $y=x^{2}-49$
11. $h(x)=9 x^{2}-16$
12. $y=4 x^{2}-121$
13. $y=25 x^{2}-1$
14. $h(x)=x^{2}-64$
15. $f(x)=100 x^{2}-81$

Practice Problems: Set 2

Factor each quadratic expression.

1. $7 x^{2}+14 x-56$	2. $6 x^{2}-72 x+216$	3. $5 x^{2}+15 x-20$
4. $4 x^{2}+16 x+12$	5. $3 x^{2}+24 x+36$	6. $6 x^{2}-20 x+6$
7. $8 x^{2}-32$	8. $4 x^{2}-4 x$	9. $3 x^{2}-12 x-63$

ALGEBRA:
Lesson 3.6 *part 2*
Converting $a x^{2}+b x+c$ to Factored Form
(0) Convert quadratic expressions in the form $a x^{2}+b x+c$ to factored form.
THE SHORTCUT

Factoring by Grouping

In Lesson 3.6, you learned to factor expressions in the form $a x^{2}+b x+c$ where $a \neq 0$ using an educated "guess and check" method. Another method for factoring this type of expression is called "Factoring by Grouping". Follow the process shown below for the expression $3 x^{2}-11 x-4$.

Steps to Factoring by Grouping	Example: $3 x^{2}-11 x-4$
1. Find the product of a and c.	$a c=3 \cdot(-4)=-12$
2. Find two factors of $a c$ that add to the center term b (the coefficient of x).	Factors of $a c$ that sum to $b:-12$ and 1 $-12+1=-11$
3. Write the center term using the sum of the two new factors including the proper signs.	$3 x^{2}-11 x-4=3 x^{2}-12 x+1 x-4$
4. Group the terms to form pairs (the first two terms and the last two terms). Factor each pair by finding common factors.	$3 x^{2}-12 x+1 x-4=3 x(x-4)+1(x-4)$
5. Factor out the common binomial parentheses.	$(x-4)(3 x+1)$

Example 1

$$
\begin{aligned}
& 2 x^{2}-5 x+3 \\
& \mathrm{ac}= 6 \\
& 10=-1(-6) \text { or }-2(-3) \\
&-1+-6=-7 \text { (no) } \\
&-2+(-3)=-5 \text { (YES!) }
\end{aligned}
$$

So: $2 \mathrm{x}^{2}-2 \mathrm{x}-3 \mathrm{x}+3$

Example 1 cont.

$$
2 x^{2}-2 x-3 x+3=2 x^{2}-2 x-(3 x-3)
$$

Be careful with the negatives!

First part has a 2 x in common;
Second part has a 3 in common

$$
2 x(x-1)-3(x-1)
$$

Final answer: $(2 \mathrm{x}-3)(\mathrm{x}-1)$
Use FOIL to check!

Example 1 - take 2!

$2 x^{2}-5 x+3$ So: $2 x^{2}-2 x-3 x+3$

BUT - it also can be written this way:

$$
2 x^{2}-3 x-2 x+3=2 x^{2}-3 x-(2 x-3)
$$

First part has an x in common;
Second part has a 1 in common
$x(2 x-3)-1(2 x-3)$
Final answer: $(\mathrm{x}-1)(2 \mathrm{x}-3)$ SAME ANSWER!

Example 2

$4 x^{2}-35 x-9 \quad$ ac $=-36$
$-36=-1(36)$ or $1(-36)$ or $-2(18)$ or $2(-18)$
or $-3(12)$ or $3(-12)$ or $-4(9)$ or $4(-9)$ or $-6(6)$
Sum of $-35 ?=1(-36)$

So: $4 x^{2}+1 \mathrm{x}-36 \mathrm{x}-9=\underline{\mathrm{x}^{2}+1 \mathrm{x}}-(\underline{36 x+9})$
Factor: $\quad x(4 x+1)-9(4 x+1)$
Answer: $(x-9)(4 x+1)$

3.6 Practice Problems: Set 3

Factor by Grouping. Use foil to check.

1. $2 x^{2}+7 x+6$
2. $2 x^{2}+13 x+15$
3. $5 x^{2}+6 x+1$
4. $2 x^{2}-x-6$
5. $3 x^{2}+2 x-1$
6. $4 x^{2}+8 x+3$
7. $6 x^{2}+17 x-3$
8. $3 x^{2}-22 x+7$
9. $9 x^{2}+27 x+20$

ALGEBRA: LAST SLIDE for this week!

