ALGEBRA 1:

Week of April 13

Go through the slides (notes) and work through the examples on a separate piece of paper. Then do the given practice problems (again, on a separate piece of paper). Check your answers with the key given at the bottom of the practice page.
Check Google Classroom for the schedule of online help sessions via Zoom.

ALGEBRA: Lesson 3.5

Converting $x^{2}+b x+c$ to Factored Form

(0) Convert quadratic expressions in the form $x^{2}+b x+c$ to factored form.

Explore! Number Riddles (This was the last HW assigned - see parentheses for solutions.)

Step 1 I am thinking of two integers that have a sum of 11 and a product of 24 . What are my two numbers? $(\mathbf{8} \& 3)$

Step 2 I am thinking of two integers that have a sum of 2 and a product of -35 . What are my two numbers? (7\&-5)

Step 3 Are there only two integers that work for each of the above riddles? Explain your reasoning. (yes, otherwise you only get the sum OR the product, not both)

Step 4 Find two integers that add to the first number and multiply to the second number.
a. 9 and $20(4 \& 5)$
b. 12 and $32(4 \& 8)$
c. 7 and $12(3 \& 4)$
d. 3 and $-18(6 \&-3)$ e. -5 and $-14(-7 \& 2)$ f. 7 and $-30(10 \&-3)$
g. 4 and $-45(9 \&-5)$ h. 0 and $-16(4 \&-4) \quad$ i. -12 and $20(-10 \&-2)$

Step 5 Write two number riddles of your own that fit the description in Step 4. Have a classmate solve your riddles.

Step 6 How might a multiplication table be helpful in solving this type of riddle?

Factoring $x^{2}+b x+c$

A quadratic expression in the form $x^{2}+b x+c$ can be written in the form $(x+p)(x+q)$ if $p+q=b$ and $p q=c$.

$$
x^{2}+b x+c=(x+p)(x+q)
$$

$$
\begin{array}{llll}
\mathrm{F} & \mathrm{O} & \mathrm{I} & \mathrm{~L}
\end{array}
$$

$$
(x+5)(x+3)=x^{2}+3 x+5 x+15
$$

$$
=x^{2}+(3+5) x+15
$$

$$
=x^{2}+8 x+15
$$

The b value (OI) is the sum of \quad The c value (L) is the product the two numbers, 3 and 5 .

Example 2

Factor each trinomial.

a. $x^{2}-4 x-32$

Find the values of b and c.

$$
b=-4 \text { and } c=-32
$$

Make a list of factor pairs of c. Look for factors that have a sum equal to the value of b.

The product of 4 and -8 equals - $\mathbf{3 2}$ (the value of c).

The sum of 4 and -8 equals -4

Factor Pairs of $-\mathbf{3 2}$	Sum
1 and -32	-31
-1 and 32	31
2 and -16	-14
-2 and 16	14
4 and -8	-4
-4 and 8	4

Example 2 Continued...

Factor each trinomial.
a. $x^{2}-4 x-32$

Factor Pairs of -32	Sum
4 and -8	-4

Write in factored form.

$$
x^{2}-4 x-32=(x+4)(x-8)
$$

Check by distributing.

$$
\begin{aligned}
\nabla(x+4)(x-8) & =x^{2}-8 x+4 x-32 \\
& =x^{2}-4 x-32
\end{aligned}
$$

Example 3

Graph the quadratic function $y=x^{2}+2 x-8$. Clearly mark the x-intercepts and the vertex.

Find the values of b and c.

$$
b=2 \text { and } c=-8
$$

Make a list of factor pairs of c. Look for factors that have a sum equal to the value of b.

Factor Pairs of $-\mathbf{8}$	Sum
1 and -8	-7
-1 and 8	7
2 and -4	-2
-2 and 4	2

$$
y=(x-2)(x+4)
$$

Write in factored form.

Example 2 Continued...

Factor each trinomial.
b. $x^{2}-10 x+21$

Find the values of b and c.

$$
b=-10 \text { and } c=21
$$

Make a list of factor pairs of c. Notice that the product is positive and the sum is negative. This means both numbers must be negative.

Check by distributing.

Factor Pairs of 21	Sum
-1 and -21	-22
-3 and -7	-10

$x^{2}-10 x+21=(x-3)(x-7)$

$$
\begin{aligned}
\nabla(x-3)(x-7) & =x^{2}-7 x-3 x+21 \\
& =x^{2}-10 x+21
\end{aligned}
$$

Example 3 Continued...

Graph the quadratic function $y=x^{2}+2 x-8$. Clearly mark the x-intercepts and the vertex.

Find the x-intercepts using the Zero Product Property.
Set the equation equal to zero.

$$
0=(x-2)(x+4)
$$

Set each factor equal to zero.

\[

\]

The x-intercepts of the function are $(2,0)$ and $(-4,0)$.

Example 3 Continued...

Graph the quadratic function $y=x^{2}+2 x-8$. Clearly mark the x-intercepts and the vertex.

Find the axis of symmetry by averaging the two x-intercepts or

$$
x=\frac{2+(-4)}{2}=-1
$$ using the formula $x=-\frac{b}{2 a}$.

Substitute $x=-1$ into the original

$$
\begin{gathered}
y=(-1)^{2}+2(-1)-8 \\
y=1+(-2)-8 \\
y=-9
\end{gathered}
$$ function.

Evaluate.

The vertex is at $(-1,-9)$.

Example 3 Continued...

Graph the quadratic function $y=x^{2}+2 x-8$. Clearly mark the x-intercepts and the vertex.

Find two more points - one to each side of the vertex.
$\mathrm{x}=-\mathbf{2}$
$\mathbf{x}=\mathbf{0}$
$y=(-2)^{2}+2(-2)-8 \quad y=0^{2}+2(0)-8$
$=4-4-8$
$=-8$
$=-8$
$(-2,-8)$
(0, -8)

Graph the five points (x-intercepts,

vertex, and the two other points) and
connect with a smooth curve.

3.5 Practice Problems: Factor each quadratic expression

1. $\mathrm{x}^{2}+12 \mathrm{x}+20$
2. $x^{2}+10 x+9$
3. $x^{2}-3 x-10$
4. $x^{2}+2 x-24$
5. $x^{2}+8 x+16$
6. $x^{2}-9 x+14$
7. $x^{2}-4 x-12$
8. $x^{2}+13 x+22$

3.5 Practice Problems: Find the zeroes of each quadratic function

9. $y=x^{2}+10 x+21$
10. $p(x)=x^{2}-11 x-26$
11. $g(x)=x^{2}+x-12$
3.5 Practice Problems: Graph each quadratic function. Clearly mark the x-intercepts and the vertex plus 2 more points. (Hint: Factor first, then find the zeroes).

$$
h(x)=x^{2}+2 x-8
$$

$y=x^{2}+6 x+5$

ANSWERS TO LAST WEEK'S PACKET

Problems of the Day:

1) 91 pennies
2) 89 ways
3) 4) 8 2) 123$) 6 \quad 4) 1$
$4 \times 4 \times 4: 8,24,24,8 \quad 5 \times 5 \times 5: 8,36,54,27$
1) $6,6,0$
2) $15,55,1 / 2\left(\mathrm{n}^{\wedge} 2+\mathrm{n}\right)$

ANSWERS TO LAST WEEK'S PACKET

Problems of the Day:
6) $5,13,26,45(+8,+13,+19)$
7) $1^{\text {st }}$ digit is 1 less than subtracting the first digits. $1^{\text {st }} \&$ last digit add to 9 ; middle digit $=9$
8) $6,24,120$. use a factorial: "!" (! means if there are 6 blocks, it is $6!=6 * 5 * 4 * 3 * 2 * 1)$
9) They both needed 6 helpers
10) A square of 10×10 has the largest area.

ALGEBRA: Lesson 3.6

Converting $a x^{2}+b x+c$ to Factored Form

Convert quadratic expressions in the form $a x^{2}+b x+c$ to factored form.

Good to Know!

$3 x^{2}+16 x+5 \rightarrow(\square x+\square)(\square x+\square)$
At this point, use trial and error to try the different combinations in the empty slots above. Check if you have found the correct solutions. Find the product of the two "outside" terms. Add this to the product of the two "inside" terms.

If the two products sum to the middle term of the original quadratic expression, you have found the correct factors of the expression.

$$
3 x^{2}+16 x+5 \rightarrow(x+5)(3 x+1)
$$

Example 1

Factor $2 x^{2}+7 x+6$.
Find the factor pairs of $2 x^{2} . \quad 2 x$ and x
Find the factor pairs of $6 . \quad 1$ and 6 or 2 and 3

Check each possible combination until you find the right one.
$(2 x+1)(x+6) \quad(2 x+6)(x+1) \quad(2 x+2)(x+3) \quad(2 x+3)(x+2)$
$2 x^{2}+13 x+6 \quad \begin{gathered}\text { These factors have a common factor inside of the } \\ \text { parentheses because } 2 \text { en }\end{gathered}$
Incorrect parentheses because 2 can be divided into both terms. The original expression did not have a common factor throughout, so these cannot be the solution.
$2 x^{2}+7 x+6$
Correct!

$$
2 x^{2}+7 x+6=(2 x+3)(x+2)
$$

Example 2

Factor $3 x^{2}-11 x-4$
Find the factor pairs of $3 x^{2}$
$3 x$ and x
Find the factor pairs of -4 .
1 and -4
or -1 and 4
or 2 and -2
Check each possible combination until you find the right one.

$$
\begin{aligned}
& (3 x+1)(x-4) \\
& 3 x^{2}-11 x-4 \\
& \text { Correct! }
\end{aligned}
$$

$(3 x-1)(x+4) \quad(3 x+2)(x-2) \quad(3 x-2)(x+2)$
No need to expand these once you have found a
combination that works.

$$
3 x^{2}-11 x-4=(3 x+1)(x-4)
$$

Example 3

Factor $4 x^{2}-8 x=-3$.
Move term(s) so that the equation is in the form $a x^{2}+b x+c=0$.

Find the factor pairs for $\mathbf{4} \boldsymbol{x}^{\mathbf{2}}$.
Find the factor pairs for 3.

$$
\begin{array}{r}
4 x^{2}-8 x=-3 \\
+3+3 \\
4 x^{2}-8 x+3=0
\end{array}
$$

$4 x$ and x or $2 x$ and $2 x$
1 and 3 or -1 and -3

Example 3 Continued...

Factor $4 x^{2}-8 x=-3$.
Check each possible combination until you find the right one.

(2x+1)(2x+3)	$(2 x-1)(2 x-3)$	$(x+1)(4 x+3)$	$(x-1)(4 x-3)$
The middle term is negative so this expression will not work.	$\begin{gathered} 4 x^{2}-6 x-2 x+3 \\ 4 x^{2}-8 x+3 \\ \text { YES! } \end{gathered}$	The middle term is negative so this expression will not work.	Not Correct

Since $4 x^{2}-8 x+3=(2 x-1)(2 x-3), \quad 2 x-1=0$ and $2 x-3=0$ set each factor each to 0 and solve
$+1+1+3+3$

| $\begin{array}{c}\text { The solutions are where the graph of } \\ \text { the function } f(x)=4 x^{2}-8 x+3\end{array}$ |
| :--- |$x=\frac{1}{2} \quad$ and $\quad x=\frac{3}{2}$

crosses the x-axis.

3.6 Practice Problems: Factor each quadratic expression

2. $5 x^{2}+17 x+6$
3. $3 x^{2}+5 x+2$
4. $3 x^{2}+5 x-2$
5. $4 x^{2}+8 x+3$
6. $2 x^{2}-17 x+21$
7. $3 x^{2}+4 x-4$

3.6 Practice Problems: Find the zeros

 of each quadratic function. (Hint: Set each function equal to zero. Factor and then solve.)8. $f(x)=2 x^{2}+9 x+7$
9. $h(x)=5 x^{2}+4 x-1$

Solve each equation. (Hint: see example 3.)
10. $3 x^{2}+17 x=-10$
11. $2 x^{2}-x=15$

3.6 Practice Problems: ANSWER PAGE

$\varepsilon=x$ pue Z/G- = ${ }^{\text {x }}$	- U
$\mathrm{s}^{-}=\mathrm{x}$ pue $\varepsilon / \mathcal{Z}^{-}=\mathrm{x}$	- 01
$L^{-}=\times$pue $\mathrm{G} / \mathrm{L}=\mathrm{x}$	6
L- = x pue $Z / L^{-}=x$	8

$$
\begin{aligned}
& (z+x)(z-x \varepsilon) \cdot L \quad \cdot \\
& (L-x)(\varepsilon-x z) \cdot 9 \\
& (1+x z)(\varepsilon+x z) \cdot s \text {. } \\
& ((z+x)(\downarrow-x \varepsilon) \cdot \downarrow \cdot \\
& (\imath+x)(z+x \varepsilon) \cdot \varepsilon \text {. } \\
& (\varepsilon+x)(z+x \mathrm{~g}) \cdot z \quad \text {. } \\
& (\varepsilon+x)(1+x z) \cdot \rho \\
& \downarrow \text { pue } \mathrm{g} \cdot \mathrm{q} \\
& x \text { pue } x z \cdot{ }^{2}
\end{aligned}
$$

ALGEBRA: LAST SLIDE for this week!

